By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Scoopico
  • Home
  • U.S.
  • Politics
  • Sports
  • True Crime
  • Entertainment
  • Life
  • Money
  • Tech
  • Travel
Reading: The ‘brownie recipe problem’: why LLMs must have fine-grained context to deliver real-time results
Share
Font ResizerAa
ScoopicoScoopico
Search

Search

  • Home
  • U.S.
  • Politics
  • Sports
  • True Crime
  • Entertainment
  • Life
  • Money
  • Tech
  • Travel

Latest Stories

China’s Work Culture—and What the West Misunderstands About It
China’s Work Culture—and What the West Misunderstands About It
Team USA’s Isabeau Levito Pleads for Olympic Village Not to ‘Evict’ Her
Team USA’s Isabeau Levito Pleads for Olympic Village Not to ‘Evict’ Her
Trump crackdown drives 80% plunge in immigrant employment, reshaping labor market, Goldman says
Trump crackdown drives 80% plunge in immigrant employment, reshaping labor market, Goldman says
Netflix grants WBD 7-day waiver to reopen deal talks with Paramount Skydance
Netflix grants WBD 7-day waiver to reopen deal talks with Paramount Skydance
Mike Evans Will Return for 2026; Buccaneers Star WR to Test Free Agency
Mike Evans Will Return for 2026; Buccaneers Star WR to Test Free Agency
Have an existing account? Sign In
Follow US
  • Contact Us
  • Privacy Policy
  • Terms of Service
2025 Copyright © Scoopico. All rights reserved
The ‘brownie recipe problem’: why LLMs must have fine-grained context to deliver real-time results
Tech

The ‘brownie recipe problem’: why LLMs must have fine-grained context to deliver real-time results

Scoopico
Last updated: February 4, 2026 8:34 pm
Scoopico
Published: February 4, 2026
Share
SHARE



Contents
Mixing reasoning, real-world state, personalizationAvoiding 'monolithic' agent systems

Today’s LLMs excel at reasoning, but can still struggle with context. This is particularly true in real-time ordering systems like Instacart. 

Instacart CTO Anirban Kundu calls it the "brownie recipe problem."

It's not as simple as telling an LLM ‘I want to make brownies.’ To be truly assistive when planning the meal, the model must go beyond that simple directive to understand what’s available in the user’s market based on their preferences — say, organic eggs versus regular eggs — and factor that into what’s deliverable in their geography so food doesn’t spoil. This among other critical factors. 

For Instacart, the challenge is juggling latency with the right mix of context to provide experiences in, ideally, less than one second’s time. 

“If reasoning itself takes 15 seconds, and if every interaction is that slow, you're gonna lose the user,” Kundu said at a recent VB event. 

Mixing reasoning, real-world state, personalization

In grocery delivery, there’s a “world of reasoning” and a “world of state” (what’s available in the real world), Kundu noted, both of which must be understood by an LLM along with user preference. But it’s not as simple as loading the entirety of a user’s purchase history and known interests into a reasoning model. 

“Your LLM is gonna blow up into a size that will be unmanageable,” said Kundu. 

To get around this, Instacart splits processing into chunks. First, data is fed into a large foundational model that can understand intent and categorize products. That processed data is then routed to small language models (SLMs) designed for catalog context (the types of food or other items that work together) and semantic understanding. 

In the case of catalog context, the SLM must be able to process multiple levels of details around the order itself as well as the different products. For instance, what products go together and what are their relevant replacements if the first choice isn't in stock? These substitutions are “very, very important” for a company like Instacart, which Kundu said has “over double digit cases” where a product isn’t available in a local market. 

In terms of semantic understanding, say a shopper is looking to buy healthy snacks for children. The model needs to understand what a healthy snack is and what foods are appropriate for, and appeal to, an 8 year old, then identify relevant products. And, when those particular products aren’t available in a given market, the model has to also find related subsets of products. 

Then there’s the logistical element. For example, a product like ice cream melts quickly, and frozen vegetables also don’t fare well when left out in warmer temperatures. The model must have this context and calculate an acceptable deliverability time. 

“So you have this intent understanding, you have this categorization, then you have this other portion about logistically, how do you do it?”, Kundu noted.

Avoiding 'monolithic' agent systems

Like many other companies, Instacart is experimenting with AI agents, finding that a mix of agents works better than a “single monolith” that does multiple different tasks. The Unix philosophy of a modular operating system with smaller, focused tools helps address different payment systems, for instance, that have varying failure modes, Kundu explained. 

“Having to build all of that within a single environment was very unwieldy,” he said. Further, agents on the back end talk to many third-party platforms, including point-of-sale (POS) and catalog systems. Naturally, not all of them behave the same way; some are more reliable than others, and they have different update intervals and feeds. 

“So being able to handle all of those things, we've gone down this route of microagents rather than agents that are dominantly large in nature,” said Kundu. 

To manage agents, Instacart has integrated with OpenAI’s model context protocol (MCP), which standardizes and simplifies the process of connecting AI models to different tools and data sources.

The company also uses Google’s Universal Commerce Protocol (UCP) open standard, which allows AI agents to directly interact with merchant systems. 

However, Kundu's team still deals with challenges. As he noted, it's not about whether integration is possible, but how reliably those integrations behave and how well they're understood by users. Discovery can be difficult, not just in identifying available services, but understanding which ones are appropriate for which task.

Instacart has had to implement MCP and UCP in “very different” cases, and the biggest problems they’ve run into are failure modes and latency, Kundu noted. “The response times and understandings of both of those services are very, very different I would say we spend probably two thirds of the time fixing those error cases.” 

[/gpt3]

As AI use expands, platforms like Mind Max search to simplify cross-app integration
Greatest smartwatch deal: Get the Apple Watch Extremely 2 for $149 off at Amazon
Finest Hearth Stick deal: Save $20 on Amazon Hearth Stick 4K
1Password Coupon: Get As much as 50% Off in July
NYT Strands hints, solutions for September 17, 2025
Share This Article
Facebook Email Print

POPULAR

China’s Work Culture—and What the West Misunderstands About It
Politics

China’s Work Culture—and What the West Misunderstands About It

Team USA’s Isabeau Levito Pleads for Olympic Village Not to ‘Evict’ Her
Entertainment

Team USA’s Isabeau Levito Pleads for Olympic Village Not to ‘Evict’ Her

Trump crackdown drives 80% plunge in immigrant employment, reshaping labor market, Goldman says
Money

Trump crackdown drives 80% plunge in immigrant employment, reshaping labor market, Goldman says

Netflix grants WBD 7-day waiver to reopen deal talks with Paramount Skydance
News

Netflix grants WBD 7-day waiver to reopen deal talks with Paramount Skydance

Mike Evans Will Return for 2026; Buccaneers Star WR to Test Free Agency
Sports

Mike Evans Will Return for 2026; Buccaneers Star WR to Test Free Agency

Android 17 Beta 1 arrives for Pixel: How to download it
Tech

Android 17 Beta 1 arrives for Pixel: How to download it

Scoopico

Stay ahead with Scoopico — your source for breaking news, bold opinions, trending culture, and sharp reporting across politics, tech, entertainment, and more. No fluff. Just the scoop.

  • Home
  • U.S.
  • Politics
  • Sports
  • True Crime
  • Entertainment
  • Life
  • Money
  • Tech
  • Travel
  • Contact Us
  • Privacy Policy
  • Terms of Service

2025 Copyright © Scoopico. All rights reserved

Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?